Authors: Nicolò Cesa-Bianchi, Roberto Colomboni, and Maximilian Kasy

Institution: Stone Center Working Paper Series. no. 89

Date: July 2024

Abstract: 

We consider the problem of repeatedly choosing policies to maximize social welfare. Welfare is a weighted sum of private utility and public revenue. Earlier outcomes inform later policies. Utility is not observed, but indirectly inferred. Response functions are learned through experimentation. We derive a lower bound on regret, and a matching adversarial upper bound for a variant of the Exp3 algorithm. Cumulative regret grows at a rate of T2/3. This implies that (i) welfare maximization is harder than the multi-armed bandit problem (with a rate of T1/2 for finite policy sets), and (ii) our algorithm achieves the optimal rate. For the stochastic setting, if social welfare is concave, we can achieve a rate of T1/2 (for continuous policy sets), using a dyadic search algorithm. We analyze an extension to nonlinear income taxation, and sketch an extension to commodity taxation. We compare our setting to monopoly pricing (which is easier), and price setting for bilateral trade (which is harder). 

Link: Adaptive Maximization of Social Welfare